

Year 12 Mathematics Specialist Units 3, 4 Test 4 2021

Section 1 Calculator Free Integration and Applications of Integration

STUDENT'S NAME

DATE: Tuesday 27 July

TIME: 25 minutes

MARKS: 25

INSTRUCTIONS: Standard Items:

Pens, pencils, drawing templates, eraser, Formula Booklet

Questions or parts of questions worth more than 2 marks require working to be shown to receive full marks.

1. (5 marks)

Determine the following integrals:

(a)
$$\int \frac{x^2 - 1}{x} dx$$
 [2]

(b)
$$\int \frac{\ln(x^2)}{x} dx$$

[3]

2. (9 marks)

Determine the following integrals:

(a)
$$\int \frac{\sin^2 \theta + \cos^2 \theta}{\cos 2\theta + \sin^2 \theta} \, d\theta$$
 [3]

(b) $\int \sin^3 x \, dx$

(c) $\int \frac{x^2}{x-1} dx$ [3]

[3]

3. (5 marks)

(a) Express
$$\frac{x+7}{(x+1)(x-2)}$$
 in the form $\frac{a}{x+1} + \frac{b}{x-2}$. [2]

(b) Hence, determine
$$\int \frac{x+7}{(x+1)(x-2)} dx$$
 [3]

4. (6 marks)

Evaluate exactly:
$$\int_{0}^{\sqrt{2}} \sqrt{1 - \frac{x^2}{4}} dx$$
 using the substitution $x = 2\sin\theta$

Year 12 Mathematics Specialist Units 3, 4 Test 4 2021

Section 2 Calculator Assumed Integration and Applications of Integration

STUDENT'S NAME

DATE: Tuesday 27 July

TIME: 25 minutes

MARKS: 25

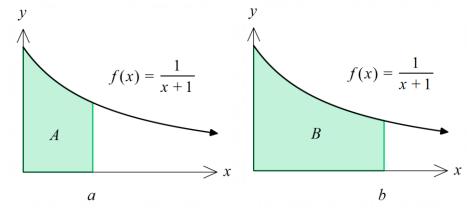
INSTRUCTIONS:

Standard Items:Pens, pencils, drawing templates, eraserSpecial Items:Three calculators, notes on one side of a single A4 page (these notes to be handed in with this assessment)

Questions or parts of questions worth more than 2 marks require working to be shown to receive full marks.

5. (4 marks)

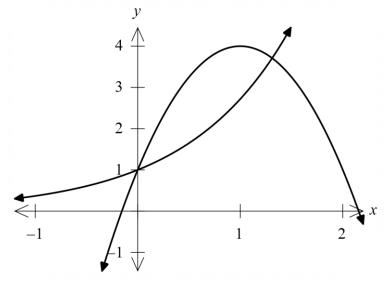
The area labelled B is three times the area labelled A.



Express b in terms of a.

6. (8 marks)

Consider the two functions $f(x) = e^x$ and $g(x) = -3x^2 + 6x + 1$.

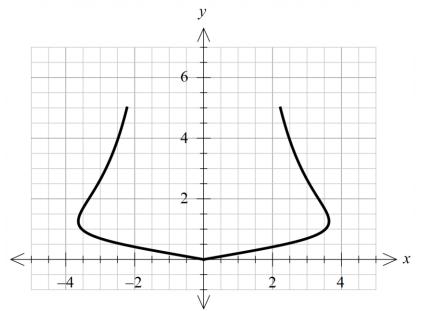


(a) (i) Write an integral expression for the approximate enclosed area between the curves. [2]

- (ii) Calculate the approximate enclosed area. [2]
- (b) (i) Write down an integral expression for volume formed when the enclosed region is rotated about the x-axis. [2]
 - (ii) Calculate the volume formed when the enclosed region is rotated about the x-axis. [2]

7. (5 marks)

The top part of a wine glass is modelled by rotating the graph of $x^2 = y^2(25 - x^2y)$ from y = 0 to y = 5 about the y axis as shown below. Dimensions are measured in centimetres.



Calculate, correct to the nearest 0.01 cm, the depth of wine in the glass if it is to contain 75% of its maximum volume.

8. (8 marks)

The table below gives the value of a function obtained from an experiment.

[x	0	1	2	3	4	5	6
	f(x)	9.3	9.0	8.3	6.5	2.3	-7.6	-10.5

Two different methods are used to approximate $\int_{0}^{6} f(x) dx$.

(a) Method 1: Using three equal subintervals, estimate $\int_{0}^{6} f(x) dx$ by using trapeziums. [4]

(b) Method 2: The function $g(x) = 0.14x^4 - 1.57x^3 + 4.63x^2 - 4.34x + 9.48$ is used to estimate f(x)

x	0	1	2	3	4	5	6
f(x)	9.3	9.0	8.3	6.5	2.3	-7.6	-10.5
g(x)	9.48	8.34	9	7.08	1.56	-5.22	-7.56

Calculate $\int_{0}^{6} g(x) dx$

[1]

[3]

(c) For this question, explain the limitations of each method and comment on which estimate is more accurate.